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The conventional ‘ bridge-feedback amplifier ’ constant-temperature hot-wire 
anemometer is analysed to determine its static and dynamic response. The 
effects of moderate feedback amplifier gain, bridge imbalance, stray bridge 
reactance, amplifier offset voltage, lack of common mode rejection, amplifier 
frequency response and departure from constant transconducture are included. 
The root loci of the system are mapped out and the consequences of the analysis 
are discussed from the viewpoint of both the operator and the designer. 

1. Introduction 
The hot-wire anemometer is an instrument which is usually calibrated statically 

and then used to measure quantities which have high-frequency components. 
The only way in which the experimentalist knows whether his instrument is 
operating correctly at high frequencies is to carry out a direct velocity pertur- 
bation test a t  these frequencies. This is difficult and inconvenient. Instead, the 
system response is inferred from an indirect electronic test such as exciting the 
system from an external voltage source. From the experimentalist’s viewpoint 
this is unsatisfactory, especially when one considers the lack of any compre- 
hensive account of the electronic behaviour of these systems. Commercial 
operating instruction manuals do not always give an insight into the processes 
occurring in the apparatus provided. As a result many users have little confidence 
in the results obtained. 

The unsatisfactory state of hot-wire anemometry was made even more 
apparent to the authors when they found a lack of agreement between the 
turbulence levels indicated by different hot-wire systems for the measurement 
of the same flow (20 % difference in u’) and when great difficulty was encountered 
in maintaining system stability. For these reasons, a detailed study of hot-wire 
anemometry was carried out and this paper reports on the first phase of the work. 
This is concerned with the behaviour of the standard bridge and feedback 
amplifier system. 

With the increasing availability of cheap low drift operational amplifiers in 
integrated circuit form it is becoming easier for the non-electronic specialist to 
construct his own hot-wire anemometer. The authors hope that this paper will 
provide useful guide lines for the various adjustments which should be incor- 
porated for proper operation and calibration of these systems. 
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In the past these systems have been designed to approach an apparent ideal 
situation where the wire is maintained at a constant temperature (hence its 
name). Under these conditions the wire is believed to follow certain known heat 
transfer laws. The temperature of the wire is never really constant and in any 
ease if the system is appropriately calibrated the temperature variations are 
taken into account. 

Attempts to maintain the wire temperature constant within very close limits 
by the use of high amplifier gain lead to problems in stability. Further incentives 
for the use of higher amplifier gain and hence constant wire resistance are : (1)  the 
analysis of the system is greatly simplified, and (2) high-frequency response is 
believed to result. The usual simplified analysis assumes that the bridge is 
perfectly balanced at the operating point, and, if there are no stray reactances in 
the bridge, the impedance seen by the amplifier can be regarded as resistive and 
constant, thus leading to the idea of a constant-transconductance amplifier in a 
single feedback loop. This treatment omits many reasons for the observed 
instabilities. Hence an analysis is undertaken in which the effects of moderate 
amplifier gain, bridge imbalance, stray bridge reactance, amplifier offset voltage, 
lack of common mode rejection, amplifier frequency response and departure from 
constant transconductance are all included. To the authors’ knowledge no 
similar comprehensive analysis has been published, although some analyses have 
included one or another of the above effects singly. 

In  $ 2  of this paper the static non-linear analysis is reported. The linearized 
dynamic analysis of an ideal system is reported in $ 4  and the connexion 
between the static and the dynamic analyses is shown. In  $ 6  the stability and 
frequency response of a real hot-wire system are shown to be influenced by 
bridge reactance, and various practical complications are analysed. In $ 7 some 
experiments are reported which verify certain aspects of the analysis. 

2. Static non-linear analysis 
A typical circuit is shown in figure 1.  The first stage is a differential amplifier 

of voltage gain K ,  with offset control. The second stage is a current booster with 
unity voltage gain. The amplifier used in such a system has the following ideal 
static behaviour : 

Here Egi is the input offset voltage necessary to start the system operating and 
which may also be used to balance the bridge at some desired point. The output 
current from the amplifier is 

where RT is the static resistance of the bridge. The component of 1, which passes 
through the hot wire is 

where CR = R,+Rb+R,+Rw. 

Eo = K(Ei + Eqi). (1) 

I0 = K ( E 4  + Eq$)/RT, (2) 

I1 = + R,)/CR, (3) 

The amplifier input voltage is 
Ei = I1 R, - I, R, 

= - I~Z@R, 
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Combining ( 2 ) ,  (3) and (4) gives 
1; = KEqi(Rb + 

(Ra f Rw) (Rb + + K g  
The static belzaviour of the hot-wire element is 

]I = F ( U )  (R, - R,)/Rw, 

P(U)  = x+ Y j u ,  

(6) 
where Rg is the wire resistance a t  ambient temperature and U is the fluid velocity. 
There is some doubt about the precise form of P( U) .  The 'King's law ' form is 

where X and Y are constants dependent on the wire and fluid properties.? This 
may be only an approximate law but as far as the electronic analysis is concerned 
a different form of P(U)  would only make slight numerical differences to the 

(7) 

lo = & + i" 

Eo= + co 

1 :  

- - Differential amplifier Current booster 
Bridge a i d  olket control 

FIGURE 1. Constant-temperature hot-wire anemometer circuit elements. Typically 
R, = 100 R, Rb = 100 a, R, = 1000 Q. R, will be close to 10 a. 

system time constants and sensitivity. An operating point of special interest is at 
bridge balance and this will be referred to as the balance point. For this situation 

A convenient representation of the static operation of the closed-loop system is 
formed by a cross-plot of equations ( 5 )  and (6) as shown in figure 2. In  this figure the 
operating point is defined by the intersection of ( 5 )  with K and Egi constant and 
(6) with U constant. The vertical asymptote of ( 5 )  is 

Ei = 0, fi = 0. ( 8 )  

For low gains (9) shows that the asymptotic resistance R,, may be less than Rg. 
However, for this to occur (6) shows that I t  must be negative, which implies that 
the wire is cooled by the current. Equation (6) asymptotes to I ;  = h = X + Y J U  
as R,+oo. The broken curve is a solution of ( 5 )  for negative gain or negative 

t For purposes of calculations throughout this paper adopted values for a typical 
platinum wire 4 p m  diameter and 1.2 mm long in air are X = 2300 Y = 840 (mA)2 
shn-4 and Ry = 5Q. 
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offset roltage. This path is not of interest since, as will be shown later, all points 
to the left of R,, are unstable. 

The static behaviour of the system may be understood by tracing the path of 
the operating point and balance point in figure 2 as the gain ( K )  and offset 
voltage (Eqi) are varied. Consider the system to be operating with a balanced 
bridge at  point A .  Suppose the offset voltage is reduced but Rb is varied so as to 
maintain bridge balance. As Eqi is reduced the balance point will move along the 
constant-velocity line J& = const. (A ,  A', A") until it reaches the point R, = Rg. 
This adjustment reduces the wire current to zero and the system ceases to 
operate. During this adjustment the vertical asymptote for (5) shifts to R,, = RB. 
On a King's law plot as shown in figure 3 the path traced out is along a vertical 
line through the initial balance point A .  

/Equation (5) 
(Kconstant) 

4 R , V d  Ra,b RW 

FIGURE 2. Amplifier and hot-wire characteristics. 

The shaded lines in figure 3 represent the boundaries outside which the 
solution trajectories cannot go. The upper boundary is the infinite resistance 
line (see equation (6)) and represents the case of heat generation in the wire 
reaching the maximum limit which can be removed by the flow for the set of 
conditions imposed. Burnout will occur before this condition is reached. 

Another method for shifting the balance point is to vary the velocity and offset 
voltage while the bridge resistors (Ra, Rb and R,) are maintained fixed. If the 
former two quantities are varied in a way which maintains bridge balance the 
balance point in figure 2 moves along the vertical path R, = Rwb, as the offset 
voltage is reduced. The points B' and B" are 'virtual balance points' since for 
these .JU < 0. A corresponding 'virtual balance point' is shown as point B' in 
figure 3. This point is outside the region of possible solutions and means, physically, 
that the system-operating point cannever correspondwith avirtual balance point. 

A third method of varying the balance point is to hold the velocity and bridge 
resistors (R@, Rb, R,) constant while Epi is varied. The balance point (initially 



A study of the constant-temperature hot-wire anemometer 58 1 

point A in figure 2) will move along the vertical line R, = Rwb. The system-operat- 
ing point 0 will move along the curve j U ,  = constant. When Eqt = 0, (5) is 
represented by the lines X Y and Y Z  and the balance point is B” and the operating 
point 0’. The operating point and balance point will coincide when point 0 meets 
the vertical line R, = Rwb. This occurs somewhere between Eqil and Eqi2. 

The third technique is the most practical means of adjusting the balance 
point. As a result of this adjustment, Eqi may approach zero while the current 
remains finite and for this situation the right-hand side of (5) must be indeter- 
minate. Hence 

In  4 4.1 this limiting process will be shown to be important in determining the 
frequency response and stability of an ideal hot-wire system. Figure 2 also 
indicates that as the velocity is varied the operating point moves along a path 

(R,+R,)(R~+R,)+K~ = 0. (10) 

JU 
FIGURE 3. King’s law plot. 

defined by Epi = constant. Thus, as JU-too, the wire resistance R, asymptotes 
to a limiting value Rwa. On a King’s law plot in figure 3 the path traced out by the 
operating point is shown by the broken line. The amount by which this path 
varies from a constant resistance line will depend on the gain and offset voltage 
of the feedback amplifier. The variation of wire resistance causes the local slope 
of the calibration data, I: us. J U ,  to be a function of velocity. This affects the 
dynamic sensitivity and will be discussed further in 5 6.6. 

3. Linearized d.c. perturbation response of the hot wire 
The system will be analysed by linearizing around the operating point as 

defined in the static analysis. The hot wire is a non-linear device whose voltstge- 
current characteristic may be determined from (6) as 

E, = R P ( U )  U ( ~ ( U )  - I? ) .  (11) 
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Also E, = RwIl by definition of R,. The form of (1  1) for constant velocity, that is, 
constant P( U), is shown in figure 4. The slope of the graph at  the origin is equal 
to the cold-wire static resistance Rg. A t  the operating point D ,  the static wire 
resistance is R, and the d.c. small perturbation wire resistance is given by the 
tangent to the curve at  D. 

(12) z,, = aEwlar,. 

From (11) and (12) Zwdc = Bw + a, (13)  

a = ZB~(B, - R,)/R,. where 

The overbar on R, denotes values at  the operating point D. For high currents or 
high wire temperatures the impedance given by (1 3) will differ greatly from the 
wire static resistance. 

resistance 

FIGURE 4. Voltage vs. current characteristic of hot wire. 

4. Operation of an ideal hot-wire anemometer in a turbulent field 
4.1. Basic equations 

Throughout this paper upper-case letters, such as E,, denote the instantaneous 
values of the various quantities. Overbars such as Ew denote temporal means, 
and lower-case letters such as e,  small perturbations. Thus Ew = Ew + e,. The 
same lower-case letters will also be used for the Laplace transforms of the per- 
turbations. 

The analysis presented here is applicable to an amplifier which has a flat re- 
sponse from d.c. to frequencies well beyond the range of interest. In $6.4 the 
effects of finite amplifier frequency response are investigated. Some hot-wire 
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systems have a very high d.c. or low frequency gain and a moderate and flat a.c. 
gain. The change in gain occurs at frequencies of the order of 100Hz. The 
following analysis is applicable to a typical system shown in figure 1 if 
K,,/K,, > 10, K,, > 500, Kde is used in the calculation of fz and K,, is used 
in the various perturbation equations in place of the symbol K .  

The linearized approximation for the wire voltage perturbation e, due to a 
velocity perturbation d and a current perturbation i,, is given by 

The second term in (14) includes the effect of current changes generated by the 
feedback system attempting to maintain constant wire resistance. In  this 
equation time derivatives do not enter since all analysis which follows is carried 
out in the frequency domain. 

The sensitivity of the wire to velocity perturbations at  constant current 
(8E,/aU)i=, may be obtained from the dynamic energy balance relation for the 
wire. This relation is ( 6 )  with an additional term to allow for heat accumulation 
in the wire. The King's law form is 

I:Rw = (R,-R,)(X+ Y.JU)+C(dR,/dt). (15) 
The constants X and Y are obtained by experiment for agivenwire and Cdepends 
on the thermal capacity of the wire. 

From (15) 

where S is the Laplace variable, 

T is the 'constant current' time constant due to the thermal capacity of the wire. 
This is also the time constant of a constant-current hot-wire anemometer without 
a compensation network. See Hinze (1959). 

Similarly, the wire sensitivity to current perturbations a t  constant velocity 
may be obtained from (15) : 

i?, defines the operating point of R,, and to the linearizing approximation the 
temporal mean value of R, is equal to E,. 

Equation (17) specifies the linearized hot-wire dynamic impedance, which is 
seen to be frequency dependent. This is a more general form of (13). The following 
equations describe the response of the typical system shown in figure 1 : 

e, = i,R,+e,, (18) 

e, = i,(R*+R,), (19) 

ei = i, R, - i, R,, (20) 

i, = i, + i,, (21) 



584 

and from (14 ) ,  (16 )  and (17 )  
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( 2 2 )  

Ra+Rw+- (23)  

X a 
e,  = -u’- T S + l + i l m l  + i,R,. 

Equations ( 1 8 )  and (22 )  give 
2 e, = -u‘- 

T S + 1  

An additional equation is required before the transfer function of the closed- 
loop system can be derived. This may be obtained by analysing the effect of 
bridge impedance variations on the amplifier output current by formulating the 
small signal equivalent circuit of the amplifier and bridge. The equivalent circuit 
of a transistorized amplifier system is given in figure 5.  The equivalent circuit of 
the bridge must also be determined. Equations (19 ) ,  (20) and (21 )  show 

Voltage amplifier 

FIGURE 5. Amplifier and bridge equivalent circuits. r, = amplifier output resistance; 
rb = current booster input resistance; a, = transistor parameter; rc = collector resistance; 
re = emitter resistance. 

Using (17 ) ,  the total bridge impedance 2, is 

(Rc f Rb)  [(Ra f Rw) (Ts + f 

ZR(TS + 1) + a 
2, = 

Combining (24 )  and (25 ) ,  
u’(R, + Rb) x 

C R ( T S + l ) + a ’  
e,  = i ,Z,-  

Equation (26 )  gives the small signal equivalent circuit for the bridge as shown in 
figure 5 .  Investigation of this circuit using the usual transitor approximations? 

i, = Gei + Hu’, (27) 
gives 

where G = K/zB,  H = (Rc -I- Rb) X/zB [xB(T#+ 1) + a]. (28 )  
Combining ( 2 0 ) ,  (21 ) ,  (22), (23 )  and ( 2 7 )  the transfer function between the input 
velocity perturbation and amplifier output voltage may be obtained : 

t These approximations improve with multiple stages. Two stages are usually sufficient. 
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where T4 is the system time constant and K,  the sensitivity, 

The system gain le,,/u’l for sinusoidal inputs of frequency w is equal to the modulus 
of (29) withS = j w ,  wherej = ,/- 1. Equations (29), (30) and (31) show that the 
dynamic and static responses are coupled through the term R = z, R, - R,R,. 

In $ 2  it  was shown that if the offset voltage is reduced to zero while all other 
quantities were maintained constant then 

(R~+B,) (R,+R,)+K~ = o (see equation (10)). 

From (10) and (30) it can be seen that the time constant is zero for zero offset. 
Thus the frequency response of a simple hot-wire system increases as the offset 
voltage is reduced. If Eqi is negative T4 is negative and the system is unstable. 
Thus for stable performance the operating point must be to the right of the 
vertical line R, = Rwd shown in figure 2 .  

The standard method of analysing a constant-temperature system is to assume 
that a very high gain amplifier is used. It is also usually assumed that: (1) the 
bridge is in perfect balance, fl = 0;  and (2) the bridge impedance seen by the 
amplifier is equal to the static bridge resistance with 

- 
Z,, = Z,, = R,. 

Thus the transconductance of the amplifier is given by 

G = Io/Ei = i0/eiIdc = iO/eilac = K/R,. (32) 

Combining these assumptions with ( Z O ) ,  (21), (23), (27) and (28) gives 

This simplified relation may be shown to be the same as that derived by Hinze 
(1959). 

Janssen, Ensing & Van Verp (1959), Grant & Kronauer (1962), Berger, 
Freymuth & Frobel (1963a, b ) ,  Anderson (1966) and Freymuth (1966) used the 
above assumptions in their analyses. Ossofsky (1948) assumed perfect bridge 
balance but included the effect of variable transconductance. Davis & Davies 
(1968) analysed the system using the second assumption. However, they omitted 
to derive the analytical connection between various parameters. The combina- 
tion of the authors’ static analysis with the dynamic analysis of Davis & Davies 
forms a closed set of equations. These equations and the exact equations derived 
here asymptote together for large gains. However, departure occurs for finite 
gains and low resistance ratios. 

The following analysis will show that the assumption of perfect bridge balance 
is incorrect even for K + co. If approaches zero as K is increased, (5) indicates 
that the wire current will increase without limit. However (6) shows that the wire 
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current is always below the asymptotic limit of I :  = h = X S  Y J U .  This 
demonstrates that if & approaches zero as K is increased an inconsistency develops 
between the response of the feedback system ( 5 )  and the response of the hot 
wire (6). Equations (5) and (6) may be simultaneously satisfied for large and 
increasing K only if approaches a finite limit. This limit may be determined 
by equating the asymptotic form of (5) and (6) thus: 

Stable 

Root locus 
c \ .I 

S,(K=oo) A S?K=O) 

For the typical circuit values shown in figure 1 the limiting asymptote for R is of 
the order of 100 L I Z  for a typical wire with U = 30ms-1 and Egi = 10 mV. 

Thus the simplification made by assuming perfect bridge balance and ignoring 
the term R leads to an incorrect expression for the system time constant and 
sensitivity. The magnitude of these errors will be demonstrated in § 6.1. 

j w  

Unstable 

U 

(4 (4 
FIGURE 6. Typical root locus diagrams. (a;) Simple anemometer. ( b )  Inductive anemometer. 

Damping coefficient 5 = cos ($), frequency response = OA. 

4.2.  Root locus of an ideal anemometer 

The stability and frequency response of a linear system may be specified by the 
root locus diagram. This is a plot on the 8 plane (S = v-tjw) of the system poles 
(values of AS which give 1 e,/u' I = co) , for variation of amplifier gain ( K )  (see figure 6). 
The end-points S,,X2 etc. of the root loci are determined from the transfer 
function when expressed in the following form: 

where H(AS), F (X)  and G(S)  are polynomials of the Laplace variable S. 
The system response is governed by the characteristic equation 

e,h' = H(S)/(1 -KC(AS)/P(AS)), (35) 

1 - KG(S)/P(S) = 0. 

Solutions of this equation are called the system poles. The end points of the 
root locus are given by the zeros of G(S)  (values of S for which C(S) = 0)  for 
K = co and by the zeros of P(S)  for K = 0. When these limits are evaluated the 
position of the system poles for any gain K may be sketched in using the various 
root locus rules, see Horowitz (1963). 
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If the end points have positive real parts (i.e. occur in the positive half of the 
root locus diagram) the system will be unstable for amplifier gains represented by 
the section of the locus in the positive half-plane. The scalar distance of any pole 
from the origin is equal to the characteristic frequency of that pole. For the 
operating point A ,  in figure 6 (a)  the frequency response is equal to OA. If there is 
more than one pole the system frequency response or ‘roll-off’ frequency is 
defined as the lowest frequency of all the system poles. Although the system will 
respond to higher frequencies it is unusable beyond the first pole because for 
frequencies beyond this the system sensitivity varies with frequency. 

If the poles are complex as shown in figure 6 the system has a second-order 
response and the frequency response is equal to OA ( =  OA’). The damping 
coefficient is equal to the cosine of the angle 4. 

The terminal points of the root locus of an ideal anemometer may be evaluated 
by comparing (29) and (35). 

ForK= 0 S; = - (R,+Ew+a)/(Ra+Rw)T. (36) 
ForK=oo 8, = - (8 + Rca)/RT. (37) 

5. Experimental investigation of frequency response 
A convenient experimental technique for determining the system frequency 

response is to apply small signal sine wave voltage perturbations from an external 
source. To achieve this the offset voltage may be modulated so that 

The transfer function for this case may be derived in a manner similar to that 
used for velocity perturbations. This results in 

where T, = (R,+iE,)/(R,+&,+a). 
Equation (39) shows that the characteristic pole of the system for an external 
voltage signal (e,) is the same as for a velocity perturbation input. Experimental 
investigation of constant-temperature hot-wire systems using external voltage 
signals showed that the actual response did not have the form of (39). Instead, a 
second- or higher-order response was observed. These higher-order effects 
occurred at frequencies well below the amplifier roll-off frequency. Further 
investigation revealed that they were due to bridge inductance. This was 
verified by adding small reactive elements to the bridge. Inductances of the 
order of microhenrys were found to shift the system frequency response by 
substantial amounts, whereas the addition of large capacitors had small effect. 
The most important source of inductance is the hot-wire cable. 

= Ep2 + e, sin (wt 1. (38) 

eo/e, = KK2(T2S+ l)/(T4S+ l ) ,  (39) 

6. Analysis of real hot-wire systems 

To include the effect of wire inductance (23) must be modified to read 
6.1. Analysis of hot wire with wire inductance 

eo = 
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where L, is the wire inductance. Using the same technique as outlined earlier 
leads to 

(41 )  
5 -  - Kl  
u.) ( X / 6 J n ) 2 +  25(S/O,) + 1 ’ 

_ -  1 (R,+ Rb)L,T+KRcLwT 
@?L - (Rb+R,) ( R u + & , + a ) + K ( R + R c a ) ’  

- -  25 - (R, + B,) (Rb + R,) T + (R, + Rb)L, + K(8.T + R,L,) 

w, is the system natural frequency and 5 the damping coefficient. The roots of the 
characteristic equation may be either ‘real’ or ‘complex’ depending on the offset 
voltage, amplifier gain and inductance. To determine the frequency response and 

where 

(Rb + R,) (R, + Rw + a) + K(* + Rca) 
> 

@n 

11 

r 
s ( R ,  + Rb) 

stability, the root loci for this more complicated system will be determined. The 
signalflowchartformulatedfrom (19), (20)’ (21), ( 2 7 )  and (40)isshowninfigure 7. 
Derivation of the closed-loop transfer function using the method given in 54.2 
shows that the terminal points of the loci for K = 0 are 

x - K[(B R + L,,S ) (TS + 1) +El/(  TS + 1)  ( R , - + R d  
(KR,  + R, + R b )  

A 

The terminal points of the loci for K = cg are 

-AT - R,L, 5 {[ - Ro T - R, LJ2 - 4RcLwT(l? + R,a)}i 
&,4 = 215, R, T * ( 4 3 )  

Typical root loci are shown in figure 6. The loci were obtained using the usual 
root loci construction (see Horowitz 1963). These curves follow Laplace’s 
equation. Using a hydrodynamic analogy the terminal points K = 0 and K = 00 

correspond to unit strength sources and sinks respectively and the locus is 
given by the stream function $ = +. The root locus representation is applicable 
to this system for fixed bridge imbalance only (constant Sl, and X3, J. This is not 
a practical condition since d is constant for varying K only if the offset Eqi is 
appropriately adjusted. Loci of more interest are those for fixed Eqi. Under these 
conditions the ‘end points’ given by ( 4 2 )  and ( 4 3 )  vary with K and the loci do 
not follow Laplace’s equation. The terminal points for this more practical class of 
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FIGIJRE 8. Operating-point trajectories of inductive hot-wire anemometer with 
constant input offset voltage. L, = 5pH, U = 30m-1. 

obtain optimum response are evident. The results of the upa l  root loci construc- 
tion using the terminal points given by (42) and (43) for R = 0 are shown by the 
heavy broken curve in figure 8. This is the path of the system poles obtained from 
the assumption of perfect bridge balance at all operating points. 

6.2. Experimental investigation of second-order response 

The response of a hot-wire system with inductance, to an external voltage 
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where w, and care given by (41). The numerator of (44) factorizes to give two real 
zeros, one at a frequency well beyond the range of interest, typically T6 = T/1500, 
and the other close to the zero in the system without wire inductance. Equation 

1 1 I I I 

FIGURE 9. S 
A ,  10 mV; m, 30 mV, 8= 30ms-l. 

60 

40 

20 

3 0 -* 

, 0 mV; 

FIGURE 10. Bode diagram for current injection. 
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(44) is shown on a Bode diagram in figure 10, where T5 is the lower frequency time 
constant in the numerator. The peaking at  w = w, will depend on the offset volt- 
age and for some cases the poles may have real components only. 

6.3. Improvement of frequency response of the hot-wire system 

Analysis of a system with an additional variable inductor Lb in the bridge arm 
opposite the hot wire shows that the quadratic poles still occur but the natural 
frequency may be increased. A similar behaviour is obtained if the additional 
inductor is placed in the same side of the bridge as the hot wire. 

The form of the response for Lb in the same arm as Rb is 

where 

&(Ra + fiw + a) + LW(& + R,.) + (R, + zw) (Rb +Re) T - K(RaLb - RcLw - AT) 
(Rb + Re) (Ra + Ew + a)  + K ( 2  + R,. @.) 

c, = 

Typically the denominator of (45) factorizes to give one real pole and one 
‘complex’ pair of poles. The real pole and the zero are generally well above the 
range of interest. For the typical values listed in figure 1 (45) predicts that if Lb 
is increased from 0 to 30pH the natural frequency at zero mean velocity will 
increase from 10 kHz to 40kHz. Experimental investigation using a square- 
wave voltage signal showed an improvement of this order. 

Analysis of the system with inductors in both sides of the bridge indicates that 
the terminal points of the root loci are: 

for K = 0 s3 = - + Rb)/Lb7 (46)  

7 (47) 
- [(Ra + RW) T + Lw] { [(Ra + &) T - &I2 - 4Lw Ta}f 

s4,5 = 2Lw T 
orK=m 

The loci of the system singularities for varying bridge balance were obtained 
by numerical calculation of the roots of (45). The values of the terminal points 
were obtained from (46), (47) and (48) using the asymptotic value of 3 as given by 
(34). The results non-dimensionalized with T are shown in figure 11. The broken 
curve is the path which would be predicted by authors who assume bridge 
balance at  all operating points. Figure 11 indicates which gains and offset volt- 
ages are required for optimum damping, i.e. 0-55 < 5 < 0.65. Figure 12 shows 
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the path of the operating point for varying L, and the loci of the terminal points 
for varying offset voltage are shown in figure 13. 

Equation (48) shows that the frequency response is a maximum when 

LwlLb = Ra/Rc* 

This corresponds to  perfect ax .  bridge balance with the terminal points So,, at 
minus infinity. If the adjustable inductor is further increased the poles  AS'^, , move 
to the right half-plane and hence the system could become unstable. Equation 

FIGURE 11. 8 plane loci of operating point for Lb = 39 pH. L, = 5pH,  i7 = 30 ms-1. 

(48) shows that ‘over adjustment ’ of the offset voltage has a similar effect. This 
instability is not predicted by the analysis with l? = 0 since the terminal point as 
derived from the simplified theories are independent of the offset voltage. 
Although the terminal points may be shifted to infinity by suitable adjustment of 
L,, the frequency response of a real system is limited by other stray reactive 
effects and by the finite response of the feedback amplifier. Although these two 
factors limit the improvement of the system frequency response, they do not 
change the instabilities generated by an over adjustment of Lb. 

One commercial hot-wire system in common use has a compensating inductor 
and fixed offset voltage. By suitable adjustment of the inductor the required 
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damping may be obtained, but an unsatisfactory frequency response may result. 
Alternatively the inductor may be used to obtain maximum frequency response, 
but often at the expense of incorrect damping. This system has the advantage of a 
fixed offset voltage and hence the static calibration remains unchanged for a 
given wire and resistance ratio. A serious disadvantage of this method is that, 
under certain conditions, the adjustment of L,is critical. A slight over adjustment 
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FIGURE 12. S plane trajectories of operating point for varying inductance L,: 0, 19 pH; 
0, 29 p H ;  A, 39 p H ;  0, 47 pH. L, = 5 p H ,  K = 1000, = 30 ms-I. 

can cause the system singularities to rapidly ‘jump ’ to the positive half-plane. 
It must also be possible to vary L, through a wide range of values if the system is 
to match the various probes, cables and flow conditions encountered. These 
difficulties can be overcome by using an adjustable offset voltage. This enables 
both high-frequency response and optimum damping to be obtained with the 
inductor remote from its critical value. Offset voltage adjustments can also cater 
for the various cables and flow conditions. Also, figure 11 indicates that adjust- 
ment of the amplifier gain further increases the flexibility of the system from the 
viewpoint of the operator. 

38 F L M  47 
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FIGURE 13. S plane trajectories of terminal points for varying offset voltage: 0, 0 mv; 
0 ,5  mV; 0, 10 mV; V, 20 mV. L, = 5pH, 0 = 30ms-l. 

6.4. Effect of amplifier roll-ojff on closed-loop 
frequency response 

Grant & Kronauer (1962) and Freymuth (1967) investigated this problem for the 
case of an ideal high-gain non-inductive hot wire, ignoring bridge imbalance 
and interaction between inductance and offset. When the combined effects of 
simple amplifier lag, wire inductance and bridge imbalance are investigated 
a third-order response is obtained and the analysis shows that the amplifier 
response has a secondary effect on the system frequency response compared 
to the limits imposed by the wire inductance. The instabilities due to 
amplifier roll-off as discussed by Kovasznay (1948) and Grant & Kronauer (1962) 
are not applicable to a system with bridge imbalance. For the feedback system 
analysed in this paper the system frequency response may be much higher than 
the amplifier open-loop response if the offset is suitably adjusted for optimum 
response. 

6.5. Effect of ampli’er common mode rejection 

In  the previous analysis in this paper perfect common mode rejection was 
assumed. This will not be achieved in practice. To allow for different gains ofthe 
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two amplifier inputs both the static and dynamic analyses must be modified; 
thus (1) becomes 

(49) 

where the points a and b are shown in figure 1, and K ,  and Kb represent the two 
amplifier gains. When the dynamic analysis of the inductive wire of 36.1 is 
modified to take account of the different gains the transfer function becomes a 
function of the differential gain error K ,  = K ,  - Kb. The typical system shown in 
figure 1 becomes unstable if K, = - 0.01 K,. The error in any given system may be 
allowed for by increasing the offset voltage thus shifting the roots back to the 
required part of the left-hand plane. However, this may adversely effect the 
frequency response. 

6.6. #Beet of finite amplijier gain 

Section 2 shows that the wire static resistance is a function of the mean velocity, 
except for zero offset voltage. For fixed Epi the wire resistance asymptotes to a 
constant resistance R,, as U approaches infinity, as shown in figure 2. The effect 
of the variation of wire resistance on the dynamic sensitivity may be determined 
by investigating the calibration procedure. 

The conventional calibration procedure is to plot the wire static current, or 
voltage, squared against J U .  King’s law predicts that when plotted on these 
axes the data should form a straight line thus: 

EO = -K,E, + KbEb + KEq%, 

Eg = M + N J U ,  (50)  

where M = (Ew-Rg)P/.&?w, N = (Ew-Rg)Q/&?,, 

P and Q are constants for a given wire and fluid. Ideally (50) shows that the 
system small-perturbation sensitivity is 

The effect of wire resistance variation with mean velocity is to change N so 
that the gradient of the calibration curve deviates from the ideal constant- 
temperature value. Many designers have used high-gain amplifiers to keep the 
wire resistance as constant as possible, so that the system operation approximates 
the ideal constant-resistance case, thus eliminating the variations mentioned 
above. The important factor overlooked in such reasoning is that the deviation 
of the wire resistance from the ideal constant value depends not only on the 
amplifier gain but also on the offset voltage. This is also applicable to those 
systems which have high d.c. gain and moderate a.c. gain. For satisfactory 
response the offset voltage must be adjusted to give optimum damping somewhere 
in the range of interest. Consider a system with a wire inductance of 5pH and an 
offset voltage so that optimum response is obtained a t  U = 30ms-l. The 
extent of the deviation of N from the ideal constant-temperature value is shown 
in figure 14 for various amplifier gains. Each gain has the required offset voltage 
for optimum response a t  30 ms-1. Although the absolute value of this deviation 
may be large (typically 5 % for K = loo), the curvature of the calibration data is 
small. For a velocity range of 2 to 30ms-l the gradient for K = 100 changes by 
only 1.6 %. In practice the sensitivity of the system is obtained from the gradient 

38-2 
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of the st'raight line of best fit through the calibration points. This corrects for 
most of the deviation shown in figure 14. The remaining error is introduced by the 
curvature and this amounts to only & 0.8 Ya for the above conditions. For a gain 
of 1000 the error is 5 0-5 yo and for a gain of 10000 approximately 5 0.3 %. Thus 
if the system is adjusted to have optimum damping only a small improvement of 
resistance variation is achieved by using amplifier gains beyond a 1000. 

" 0  10 30 30 
i7 (ms-1) 

FIGURE 14. King's law doviation from ideal constant-temperature value. 

7. Direct experimental determination of system frequency response 
Although the characteristic equation for velocity perturbations has been 

shown to be the same for external voltage excitation, a more satisfactory and 
convincing demonstration of a system's response is a direct test with velocity 
perturbations. 

Producing a velocity perturbation of fixed amplitude but with variable fre- 
quency is difficult. One methodis to use the principle of similarityofvortex streets 
behind cylinders of different size but operating at  the same Reynolds number and 
with the hot wire situated at  a fixed number of cylinder diameters downstream. 

Such an experiment was performed using a cylinder Reynolds number of 140 
in order to obtain a stable single-frequency vortex wake (double frequency at the 
centreline of the wake). The hot-wire systems used were a Disa 55A01 and a 
system constructed by the authors. Both systems were separately calibrated 
using a dynamic calibration procedure developed by the authors. A report of this 
procedure is being prepared. The same hot wire and probe were used to test both 
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systems. The wire diameter was 4pm, wire length 1.2mm and the mean 
velocity in all tests was less than 10 ms-l. The results of these tests are summarized 
in figure 15 which shows the variation of turbulence against frequency. The 
response of the authors’ system was flat to beyond lOkHz (the maximum 
frequency attainable) and the Disaresponse had a 3 db point (Z2reducedby50%) 
at 6kHz. The conventional electronic tests indicated that the response of the 
former was 30 kHz while the response of the Disa was 5 kHz. 

The reason for the poor response of the Disa is that it  incorporates a very high 
d.c. gain amplifier in an attempt to maintain the wire resistance constant for all 
operating velocities (see 56.6). In  order to achieve stable performance of such a 
high-gain system over a wide operating range it is necessary to use a high offset 
voltage which in this case was fixed. This high offset voltage partially nullifies 

1.0 
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0.2 

100 1000 10,000 

0 (Hz) 
FIGURE 15. Cylinder wake turbulence measurements. 0, authors’ hot wire; 

A, Disa 55 AO1. 

the advantage of high gain (see 56.6). The model proposed in this paper shows 
that these conditions produce poor response at  low mean velocities, i.e. typical 
velocities used in boundary-layer research. As the analysis and above experiment 
show, high-frequency response may be obtained at any mean velocity with 
optimum damping if the offset voltage is suitably adjusted. A few commercial 
systems currently available incorporate some offset-voltage control (e.g. 
Disa 55D01). 

8. Discussion and conclusions 
The authors believe that the knowledge gained from the analysis presented in 

this paper is essential not only for designers of hot-wire systems but also for 
proper use by operators. 
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Two techniques are examined for setting the desired values of frequency 
response and damping. First is the widely practised method of using a trimming 
inductor and fixed offset voltage. If the feedback system is to be used with a 
range of probes, probe cable lengths and meanvelocities, it may operate stably but 
will have neither optimum damping nor maximum frequency response over the 
entire design range. Satisfactory response over even part of the range of measure- 
ments generally undertaken with a hot wire is difficult to achieve with the first 
technique, and it is demonstrated here that the adjustment of inductance may be 
critical under certain conditions. Instability will result if the trimming inductor is 
taken slightly beyond its optimum setting. This instability may be overcome by 
using a high fixed offset voltage but this has the disadvantage of producing rather 
poor frequency response a t  low mean velocities. 

The second technique, which gives more flexibility, is for the operator to have 
control over the compensating inductor, the offset voltage and the amplifier gain. 
The recommended procedure for adjusting the system is initially to select the 
amplifier gain. For subsonic measurements using a platinum or tungsten wire of 
4pm diameter and 1-2mm long a gain of 500 to 1000 is satisfactory. These gains 
will produce a frequency response close to the maximum possible. The operator 
must then decide a t  which mean velocity to adjust the system for optimum 
damping. The procedure is to inject a square-wave voltage and iterate between 
the adjustment of the compensating inductor and offset voltage until a damping 
coefficient of 0.6 and maximum desired frequency response are obtained. If the 
system is adjusted for optimum damping at a mean velocity of 20 ms-l it will 
maintain satisfactory damping over the velocity range 2-40 rns-l. This is satis- 
factory for most boundary-layer measurements. If the same hot wire were to 
be used at a much higher mean velocity it would be necessary to re-adjust 
the offset voltage to suit the new conditions and carry out a new calibration. 

The results of the cylinder wake measurements demonstrate the marked 
improvement in system frequency response and damping that may be achieved 
by using the second technique. 

Analysis of a hot-wire system taking account of wire inductance, bridge 
imbalance and a simple amplifier lag shows surprisingly that the dominant factor 
in determining the system frequency response is the bridge inductance and not 
the amplifier frequency response. 

Since the calibration takes account of the major component of the variation of 
wire temperature as the mean velocity changes, the error introduced by finite 
amplifier gain in the static I: ws. J U  calibration is less than & 0.5 %, until the 
gain is as low as a few hundred. The previous practice of using very high gain 
amplifiers to eliminate the wire temperature variation ignores the fact that the 
variation of wire resistance with velocity depends not only on the amplifier gain 
but also on the offset voltage. If the system offset is adjusted to  give optimum 
damping, little improvement in wire resistance variation is achieved by using 
very high gain amplifiers. Alternatively if low offset voltages and high amplifier 
gains are used to approach the ideal constant-temperature operation, the system 
operates in a range where the trimming inductor adjustments become critical 
and a range of inductors are necessary to suit various operating conditions. Since 
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the stability of the system is the most important factor the second scheme is 
preferred despite the slight variations of wire resistance and the necessity to 
recalibrate after each adjustment of the offset voltage. 

The authors are indebted to the Australian Institute of Nuclear Science and 
Engineering for financial support of this project. 
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